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Abstract 

Len Lye (1901-1980) was an artist who wanted to build kinetic sculptures at a monumental size however 

he was constrained by the availability of resources and technology. This paper examines the structural 

design of a vertical cantilever beam which is a key element in the monumental version of Lye’s ‘Flaming 

Harmonic’. In ‘Flaming Harmonic’ the vertical cantilever vibrates at resonant bending and whirling 

frequencies due to a reciprocating harmonic ground movement which is provided by a mechanical drive. 

Lye produced a 1.3m tall model of a similar work called ‘Harmonic’. Design rules developed in this 

paper show that ‘Flaming Harmonic’ can be produced at a height of 14m. Similarity between ‘Harmonic’ 

and ‘Flaming Harmonic’ ensures that while the artwork is produced posthumously, artistic integrity for 

the larger work will be preserved. The vibratory mode shapes and corresponding stresses are established 

for ‘fixed’ and ‘pivot’ clamp designs. It is shown that while a slightly different vibrating shape is 

achieved using each method the ‘pivot’ clamp design results in a lower bending stress and hence a longer 

life for the vertical cantilever. 
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1 INTRODUCTION 

New Zealand-born artist Len Lye (1901-1980) was internationally known for his work as an 

experimental filmmaker and kinetic sculptor. A common theme in Lye’s work is the concept of 

‘composing motion’. He believed that if there was such a thing as composing music then there should 

be a means for composing motion (Horrocks, 2002). This idea was realised in many of Lye's artworks, 

produced from the late 1920s through to the early 1970s.  

Lye developed concepts for some very large sculptures with complex kinetic behaviours, but he was 

constrained by technology, cost, and availability of materials. Unable to build his sculptures at full size, 

Lye instead prepared sketches, detailed notes, and smaller-scale models, which he intended to have made 

on a monumental scale when the technology and materials became available. Following Lye’s death, 

the Len Lye Foundation was established to preserve and promote his legacy. Researchers at the 

University of Canterbury's Department of Mechanical Engineering in New Zealand have been working 

alongside the Len Lye Foundation to establish the implications for building some of Lye’s proposed 

artworks. This collaboration between the fine arts and mechanical engineering has resulted in the 

posthumous completion of some of Lye’s sculptures including 'Big Blade' (1998, 3.7m tall, 

Christchurch, NZ), 'Wind Wand' (2001, 48m tall, New Plymouth, NZ), and 'Water Whirler' (2005, 12m 

tall, Wellington, NZ).  Interest in Lye’s work continues to grow, and in July 2015 the Len Lye Centre 

was opened in New Plymouth as an archive and exhibition space for Lye’s sculptures, films, paintings 

and other artworks.   

This paper concerns the design and analysis of a new Len Lye sculpture called 'Flaming Harmonic'. The 

study will establish the feasibility of building a full-size 'Flaming Harmonic', at between 10-14m tall. 

'Flaming Harmonic' is similar to another Len Lye sculpture called 'Water Whirler' (Figure 1), with the 

addition of flames. Like 'Water Whirler', 'Flaming Harmonic' consists of a hollow vertical cantilever rod 

which is excited at the base to form modes of vibration. As 'Flaming Harmonic' vibrates, water jets or 

gas flames are emitted from jets incorporated along the length of the cantilever. 

 

Figure 1. Water Whirler 2005 (courtesy of the Len Lye Foundation) 
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2 NOTATION 

𝐴         Cross Sectional Area 

𝐶         Damping Matrix 

𝐶𝐷       Drag Coefficient 

𝑑         Element Path Length 

𝐸      Elastic Modulus 

𝐸𝑘        Kinetic Energy  

𝐸𝑃        Potential Energy 

𝐹(𝜔)    Frequency Domain Forcing 

𝑓          Time Domain Forcing 

𝑔      Gravitational Acceleration 

𝐼      Second Moment of Area 

𝐾         Stiffness Matrix 

𝐾𝑏        Cantilever Base Stiffness 

𝐿𝑅        Loss Ratio 

𝑙      Bending Length of Cantilever 

𝑀         Mass Matrix 

𝑚      Mass of the Cantilever 

 

𝑃         Material Life Performance Index 

𝑅      Radius of Curvature 

𝑟𝑜      Outer Radius of Cantilever 

𝑟𝑖      Inner Radius of Cantilever 

S          Loss Factor 

𝑈𝑎𝑒𝑟𝑜   Cyclic Aerodynamic Damping Energy 

𝑈𝑚𝑎𝑡𝑙 Cyclic Material Damping Energy 

𝑥         Cantilever Displacement Vector 

�̇�         Cantilever Velocity Vector 

𝑡           Time 

𝑋(𝜔)    Frequency Domain Displacement 

𝜎          Stress 

𝜌      Cantilever Density 

𝜌𝑎𝑖𝑟     Air Density 

𝛾      Stability Factor 

𝛾𝑐𝑟𝑖𝑡    Stability Factor at Critical Buckling Load 

𝜔         Frequency 

3 MATHEMATICS FOR MAINTAINING SIMILARITY WHILE INCREASING 

CANTILEVER SIZE 

Lye produced sketches and written descriptions for both 'Water Whirler' and 'Flaming Harmonic'. 

Although he never built either of these sculptures, he did build a similar work called 'Harmonic'.  The 

original 'Harmonic' is a vertical cantilever approximately 1.3m tall and made from 2.8mm diameter 

carbon steel rod. The base of the rod is held in a fixed clamp and reciprocates back and forth by a shake-

table type drive mechanism created from an orbital sanding machine.  

The purpose of this section is to establish the rules for changing the size of the sculpture. Observations 

of 'Harmonic' in the laboratory can be used to establish the design information required to build a larger 

version of 'Flaming Harmonic'. A 1.3m model of 'Harmonic', Figure 2a, was tested in a laboratory and 

the vibratory characteristics were discussed with the Len Lye Foundation. Based on these discussions, 

the design specifications for 'Flaming Harmonic' were established.  

3.1 Dynamic Performance of the sculpture 

Lye's drawings show that 'Water Whirler' produces two distinct vibratory forms during an artistic 

performance. Experimental testing showed that both of these forms could be created by oscillating a 

cantilever on a simple reciprocating shake table. The first form is a two-dimensional shape, Figure 2b, 

corresponding to the second beam bending mode (McCallion, 1972). Lye referred to this two-

dimensional shape as the 'planar' mode. The second form, known as the 'whirling' mode, is a revolved 

version of the two-dimensional shape. This whirling form is created by slowly decreasing the shake 

table frequency from the planar mode by a few 10ths of a cycle-per-second, until the cantilever rod 

begins to whirl. 
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(a)                                          (b)                                             (c)  
Figure 2. (a) 1.3m Fixed clamp 'Harmonic' on the shake table; (b) 2D planar mode; (c) 3D 

whirling mode  

We describe the geometric shape of the whirling mode in terms of the planar mode by using the 

trigonometric shape function  

 𝒙3𝐷 = sin(2𝜋𝜔𝑡) 𝒙2𝐷 + cos(2𝜋𝜔𝑡) 𝒙2𝐷 (1) 

The planar form is described as 𝒙 2𝐷, which is a vector of displacements corresponding to nodes up the 

length of the wand, found using a lumped-mass finite element method described in Section 4. 

3.2 Maintaining Similarity 

When establishing the design requirements, it became apparent that the mode shapes for the full-sized 

vibrating 'Flaming Harmonic' should be geometrically similar to those of the model-sized vibrating 

'Harmonic'Similarity conditions are used to ensure that different scale versions of a structure have the 

same set of properties; in other words, that a larger-scale wand will remain faithful to the smaller models 

that Lye produced.  

3.3 Buckling Stability 

Lye experimented with thin rods of spring steel in a local workshop near his residence in New York, 

USA (Horrocks, 2002). He tested the stability of various rods by holding them vertically and shaking 

them to form mode shapes. He would increase the length of the vertical cantilever rod until it buckled 

under its own weight, then he would lower the rod to obtain the correct stability for the performance he 

desired. Lye's intuitive experimental method can be replicated mathematically by quantifying the 

stability of a vertical cantilever at the design height and comparing this with the stability at the onset of 

buckling. Timoshenko and Gere (1961) define the dimensionless gravity parameter for a vertical 

cantilever as 

 𝛾 =
𝑚𝑔𝑙3

𝐸𝐼
 (2) 

According to Timoshenko and Gere, the critical value for the gravity parameter, 𝛾𝑐𝑟,  at the point of 

buckling under self-weight, is 7.827. The approach to changing the size of the sculpture is to establish 

the gravity parameter of Lye's original sculpture and maintain the same ratio of 𝛾/𝛾𝑐𝑟 between Lye's 

model and the sculpture built at a larger size. 

Since the Flaming Harmonic uses a hollow tube to allow for a means for distributing the water and gas, 

the gravity parameter (2) may be written in the form 

 𝛾 = 4𝜌𝑔𝑙3(𝑟𝑜
2 − 𝑟𝑖

2)/𝐸(𝑟𝑜
4 − 𝑟𝑖

4) (3) 

For the purpose of design there are two radii which require selection so that they satisfy Equations (2 

and 3). Suitable values can be found by solving the quartic polynomial: 
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0 = γEro
4 − 4𝜌𝑔𝑙3𝑟𝑜

2 + 4𝜌𝑔𝑙3𝑟𝑖
2 − 𝛾𝐸𝑟𝑖

4 (4) 

By solving Equation (4) for 𝑟𝑜 with a test value of 𝑟𝑖, selecting the largest positive, real root returns a 

practical value of 𝑟𝑜 which satisfies the buckling stability criteria.  

3.4 System Damping  

Damping arises from two significant sources in the system, and it is useful to consider the Loss Ratio 

(LR) of energy in the system. The Loss Ratio may be defined as the energy lost per cycle due to 

aerodynamic and internal material losses divided by the sum of the kinetic and potential energy, namely 

 𝐿𝑅 =
𝑈𝑎𝑒𝑟𝑜+𝑈𝑚𝑎𝑡𝑙

𝐸𝑘+𝐸𝑃
 (5) 

If a pair of radii for the scaled cantilever are selected which satisfy Equation (2), then consideration of 

the loss ratio (Equation (5)) gives an understanding of the implications for adding energy to the system 

in order to achieve the same deflected shape for the vibrating cantilever. If the same loss ratio is achieved 

between the model and the full-size sculpture, then damping similarity is obtained.   

The rotational motion of the cantilever in the whirling mode is at a constant rotational velocity, �̇�𝑖 (where 

𝑖 represents an element in the vector 𝒙). Hence Reynolds number, kinetic energy and potential energy 

are constant with respect to time. For the planar mode, analysis of the damped energies, 𝑈𝑎𝑒𝑟𝑜 and 

𝑈𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, is more complex because the speed of the cantilever changes during each cycle. The energy 

lost per cycle due to aerodynamic damping may be defined as the aerodynamic force on the cantilever, 

multiplied by distance travelled as it vibrates 

 𝑈𝑎𝑒𝑟𝑜,𝑖 =
1

2
𝐶𝐷,𝑖𝜌𝑎𝑖𝑟𝐴𝑖�̇�𝑖

2𝑑𝑖  (6) 

The 'loss-factor' method, described by Carfagni et al. (1998), may be used to determine the material 

damping as  

 𝑈𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙,𝑖 = 2𝜋𝑆𝐸𝑘,𝑚𝑎𝑥,𝑖 (7) 

An estimate of the material loss coefficient, S, was found from graphical information produced by Ashby 

(2005). Carfagni et al. (1998) recognise that the method is only suitable near resonance, and other 

damping metrics are better for use when the cantilever is non-resonant. For Lye's 'Harmonic', where the 

cantilever is operated continuously at or near resonance, the loss ratio criteria is practically sufficient 

for damping similarity. 

It is not always possible to hold the loss ratio between scales constant, as changing the material results 

in a different loss coefficient. Using a material with a large material loss coefficient may result in a loss 

ratio from material damping alone, which is higher than the loss ratio due to combined material and 

aerodynamic damping for the original 'Harmonic'. If this occurs, the loss ratio is still a useful a metric 

to consider in the selection radii pair. 

4 THE VIBRATORY FORM 

The boundary conditions for the base of the vertical cantilever were determined experimentally and in 

conjunction with the Len Lye Foundation. Two sets of boundary conditions are considered in this paper 

which each produce slightly different, but artistically acceptable planar and whirling mode shapes. These 

boundary conditions effect the fatigue life and practical limit to which the work can be produced 

(Spencer and Gooch, 2014). The first boundary condition considered is a fixed-free cantilever where the 

cantilever rod is in a fixed clamp in the vertical position to which a reciprocating sliding ground motion 

is applied, Figure 3b. The second boundary condition is a pinned-free cantilever where the cantilever 

rod is held in a pivot clamp, Figure 3c.  

A finite-element approach was adapted from Newland (1989) to find the resonant frequencies and 

corresponding mode-shapes for the fixed and pivoting clamp designs. Figure 3a shows the basic model 

which includes four rigid links connected by springs and dampers at each joint. The equation of motion 

for the forced damped vibration of the system takes the general form: 

 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝑓 (8) 

Following the methodology in Newland (1989) the mass (M) and stiffness (K) matrices for the vertical 

cantilever are: 
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 𝑀 =
𝑚𝑙

4
[

0 0
0 1

1 1
4 3

1 4
4 8

8 5
12 7

], and 𝐾 =
𝑚𝑔

2

[
 
 
 
 
 
 0     

2𝑘

𝑚𝑔𝑙

2𝑘

𝑚𝑔𝑙
            

−4𝑘

𝑚𝑔𝑙
+ 3

  

−4𝑘

𝑚𝑔𝑙
+ 1

2𝑘

𝑚𝑔𝑙
− 1

2𝑘

𝑚𝑔𝑙
− 2 −1

−4𝑘

𝑚𝑔𝑙
+ 5

2𝑘

𝑚𝑔𝑙

−2𝐾𝑏

𝑚𝑔𝑙
− 2 −2

    
−2       −1
−2       −1

]
 
 
 
 
 
 

 (9) 

 where 𝑘 =
𝐸𝐼

𝑙
  

A harmonic forcing function was applied to the clamped end to establish the response of the system. 

The harmonic forcing function is of the form   

 𝑓 = 𝐴𝑠𝑖𝑛(2𝜋𝜔𝑡) (10) 

The system of equations were solved by finding the periodic response of the dynamic system, by taking 

a Fourier transform on Equation (8) leading to the frequency response function (Gavin, 2016) 

 𝐻(𝜔)=
 𝑋(𝜔)

𝐹(𝜔)
=

1

−𝜔2𝑀+𝜔𝐶+𝐾
 (11) 

  
(a)                              (b)                                     (c)  

 
Figure 3. (a) Finite-element model (b) Fixed reciprocating clamp (c) Pivoting clamp  

The time domain response of the structure was determined using the method outlined by Gavin (2016). 

The time domain response was solved using the MATLAB computing environment (version R2106A). 

The natural frequencies were found by plotting the frequency response function Equation (11) and 

noting the frequencies where the peak values occur.  

Applying the end conditions to the lumped-mass model is achieved by modifying the stiffness matrix 𝐾 

(Equation (9)); e.g. a pinned end condition can be applied by setting the base stiffness, 𝐾𝑏, to zero.  
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     (a)                                                        (b) 
Figure 4. Comparison of the predicted mode shape and displacements for the forced-

vibrations of (a) the pivot clamp cantilever and (b) the fixed clamp cantilever  

4.1 Softening Spring Effect 

The predicted geometric shape of the fixed clamp cantilever was found to be consistent with both 

experimental observations and results found in the literature (McCallion, 1973). The resonant frequency 

of Lye's original Harmonic was measured to be 7.49 Hz using a Linear Variable Differential Transformer 

(LVDT) linear position sensor (sample rate of 100Hz). This is less than the frequency predicted by the 

lumped mass finite-element method (7.64 Hz). The finite-element method was verified using the gravity 

parameter method proposed by Naguleswaran (1991), which also predicted a frequency of 7.64Hz.  

The difference between the modelled and experimentally found frequency is explained by non-linear 

effects arising from the large amplitude of the vibration. The large amplitude causes a softening spring 

effect described by Duffing's Equation for non-linear oscillators (Newland, 1986). 

Our experiments showed that it was possible to reach peak resonance by increasing the frequency 

slowly, as found by Malatkar (2003) for a third bending mode resonance. Practically, peak resonance is 

much more readily achieved by decreasing the frequency from above the resonance zone.  

 

Figure 5. The softening spring effect  

The description of the softening spring effect in Duffing's Equation implies that the planar and whirling 

modes of Lye's sculpture are the same resonance mode, at different amplitudes on the frequency 

response function (Figure 5). The cantilever resonates, and as the amplitude builds, the frequency can 

be dropped to increase the amplitude of the motion. Eventually, the system reaches a point where the 

resonance collapses.  
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4.2 Stress State of the Structure 

The bending moment at any point along the length of the vertical cantilever can be determined from the 

radius of curvature using (Philpot, 2013) as 

 𝑀 =
𝐸𝐼

𝑅
 (12) 

Similarly, the bending stress is (Philpot, 2013) 

 𝜎 =
𝐸𝑟𝑜

𝑅
  (13) 

By substituting the local curvature into Equations (12 and 13), the stress at any point along the cantilever 

can be found.  

Figure 6 shows the curvature (defined as 1/𝑅), which is directly proportional to the flexural stress 

distribution along the vertical cantilever (Equation (13)). 

 

  (a)                                                             (b) 

Figure 6. Comparison of curvature (1/𝑅) for the (a) fixed clamp and (b) pivot clamp  

The stress maxima occur at the point of greatest curvature for each end condition. From Figure 6 it can 

be noted that this maximum stress occurs at the base for fixed clamp and 38% up from the base for the 

pivot clamp. 

 

5 IMPLICATION OF SCALING FOR A STATICALLY SIMILAR VERTICAL 

CANTILEVER 

This section establishes the implications of using the fixed (Figure 3b) or pivot (Figure 3c) clamp end 

conditions.  

5.1 Validation 

The original 'Harmonic' was made from 2.8mm diameter carbon steel rod (a section of this was tested 

using a Vickers micro-hardness test, and found to have a yield strength of approximately 1200MPa) and 

its structural properties produce a dimensionless gravity parameter 𝛾 = 1.56. The displaced shape of 

'Harmonic' was captured using a high speed video. The minimum radius of curvature was estimated by 

superimposing an arc over the image of the vertical cantilever using the CAD program SolidWorks. 

From the measured radius of curvature, the bending moment and bending stress at the base of the fixed 

clamp vertical cantilever were estimated using Equations (12 and 13) above. A bending moment of 

1.5Nm and normal bending stress of 703MPa were determined. 
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5.2 Material Selection 

Following the approach set out in Ashby (2005), the gravity parameter Equation (2) can be used as a 

functional constraint for a performance equation based on minimising bending stress  

 𝑃 =
1

4
(

𝛾

𝑔
) (

𝑅2

𝑙3
) (

𝜎2

𝐸𝜌
) (14) 

The first two terms in Equation 14 are fixed by the desired geometric shape, here defined by the 

proportions of Lye's original vertical cantilever. However, the material properties index,  𝜎2/𝐸𝜌, is free 

and dependent on available materials. Searching for a material with the maximum value of the materials 

properties index is expected to result in the optimal life of the sculpture. As such, materials with both 

high strength-to-weight and strength-to-stiffness ratios are good candidates for the cantilever.  Fibre 

reinforced plastics (FRPs) are by far the most promising options, with exotic alloys and some plastics 

being possible second-tier choices.  

Fibreglass has been selected here as the material for construction of the vertical cantilever due to wide 

availability, low cost, and manufacturability. While the authors acknowledge extreme variability in the 

properties of all FRPs, Australasian manufacturers have been contacted, with reasonable values used in 

this analysis. Homogeneity of the materials along the length of the cantilever is an issue, and can only 

be quantified through mechanical testing for the specific manufacturing method used, on a case-by-case 

basis. Interesting future work exists in determining the impact of varying stiffness on the dynamics of 

the cantilever.  

5.3 Structural and Vibrational Properties of a Scaled Cantilever for 'Flaming 
Harmonic' 

The structural properties for a 10, 12 and 14m fibreglass cantilevers are summarised in Table 1. In each 

case, static similarity has been maintained between the original steel cantilever rod and the larger 

fibreglass cantilever rod using Equation 2, with the amplitude of the motion in the larger cantilevers 

scaled proportionally to the increase in length. 

Table 1. Structural properties of scaled vertical cantilevers 

L [m] OD [mm]  ID [mm] Mass [kg] Pinned Stress [MPa]  Fixed Stress [MPa] 

1.28 2.8 0 0.62 553.6 702.6 

10 61.9 40 33.3 261 331.2 

12 80.1 54.4 54.4 281.7 357.5 

14 100 70 106.5 301.2 382.3 

 

For the 10, 12 and 14m sculptures, the calculated Reynolds number is in the drag-crisis region (i.e. 𝑅𝑒 =
105 − 106); as a result, non-linear variations in the drag coefficient are expected (White, 2011). The 

drag force coefficient for each beam element needs to be determined based on the whirling velocity of 

each element.  

It is clear from Table 1 that using a pivot clamp design is advantageous due to the lower flexural stress 

in the cantilever.  

6 CONCLUSION 

Written descriptions of how the artist built the original sculpture, along with observations of the model-

size 'Harmonic', have been sufficient to produce the design specification of the large scale sculpture.  

Maintaining static similarity with the larger size 'Flaming Harmonic' is the best way to preserve the 

artistic integrity of the sculpture. The scaling rules presented in this paper are likely to replicate the 

artist's original intuitive experimental methods. 

The pivot clamp design produces a vibrating mode shape close to the observed shape of the fixed clamp 

design in the original 'Harmonic'. The slight difference in shape between these two clamping methods 

has been deemed acceptable from an artistic viewpoint.  

The pivot clamp design is likely to produce a reduced normal bending stress in the cantilever rod when 

compared with the fixed clamp design. However, a potential issue for the pivot clamp design may occur 

if the clamp and the vibrating rod become out of phase. In such a case this could result in a much higher 
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than expected bending stress at the clamp exit point. This issue may be alleviated by incorporating a 

slipping device such as a clutch in the mechanism for the drive design. 

Careful design of the clamp will be necessary to minimise the stress concentration at the clamp exit 

point. This especially critical for the rod in the fixed clamp design, where the maximum bending stress 

is expected at the clamp exit point. 

A non-linear softening spring effect has been observed in Lye's original 1.3m model. This effect 

necessitates a means for changing the excitation frequency to achieve the maximum amplitude of 

vibration.  
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