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Abstract 

In recent years the research concerning the representation of product functions has intensified again. 

Current studies exhibit a growing interest of design engineers to apply such representations in their daily 

practice. Simultaneously, a growing interest concerning graph-based methods for the digital 

representation of product models and the product logic in general can be observed. This paper seeks to 

combine these two research directions and to present a promising attempt to allow a sensible 

representation of product functions within a digital engineering framework based on graph based design 

languages. The main motivation for this research is to look for powerful methods and tools to overcome 

the limitations which result from the multitude of software tools along the product life cycle and 

heterogeneous data formats which are present in industrial companies and hinder integrated product 

development. This research seeks to expand the applicability of graph-based design languages into the 

domain of product functions. A rather simple product - a multicopter - is used as a basis for explanation 

and discussion. 
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1 INTRODUCTION 

In recent years the research concerning the representation of product functions has intensified again. 

Current studies exhibit a growing interest of design engineers to apply such representations in their daily 

practice. Simultaneously, a growing interest concerning graph-based methods for the digital 

representation of product models and the product logic in general can be observed. This paper seeks to 

combine these two research directions and to present a promising attempt to allow a sensible 

representation of product functions within a digital engineering framework based on graph based design 

languages. The main motivation for this research is to look for powerful methods and tools to overcome 

the limitations which result from the multitude of software tools along the product life cycle and 

heterogeneous data formats which are present in industrial companies and hinder integrated product 

development. The product development departments of industrial companies use dedicated systems for 

computer aided design (CAD), finite element analysis (FEA), multi-body simulation (MBS), thermal 

simulation, control processes and many other activities and processes. These systems are usually relying 

on proprietary data formats and the transfer of data frequently leads to losses of important information 

and data quality. Numerous efforts seek to integrate the data by means of product data management 

(PDM) or product life-cycle management (PLM) systems. However, the enormous investments of large 

companies into the further development of such systems show that the situation in industrial practice is 

everything else than satisfactory. Graph-based design languages offer one promising approach to 

address and resolve these issues. However, the applicability for the early phases of design when the 

information is abstract is currently still limited. This research seeks to expand the applicability of graph-

based design languages into the domain of product functions. A rather simple product - a multicopter - 

is used as a basis for explanation and discussion. This sample product is introduced in section 2. Section 

3 reviews the state of the art in graph based design languages and their application in product 

development processes. The initial part of section 4 deals with the state of the art of the representation 

of product functions; in the remaining part of section 4 the focus is on certain aspect of this 

representation and their merit in a digital representation. Section 5 presents a framework and first results 

concerning the digital representation of product functions in a graph-based design language.     

2 SAMPLE PRODUCT: DEVELOPMENT OF A MULTICOPTER  

The example product “multicopter” is a mechanically relatively simple system which receives its stable 

flying ability mainly through complex control engineering. The basic geometry can be generally easily 

described by the relative position of its functional components. The simplest structure is a circular 

arrangement of 4 or more rotors (see Figure 1 left side). 

  

Figure 1. Left: Basic structure of a multicopter; right: realized multicopter 

The motors are mounted on a frame that includes a landing gear and appliances for mounting electronics 

and the power supply. The specific challenge in this light-weight development is to find geometries 

which lead to a very rigid frame structure that suppresses oscillations and lead to an easier flight control. 

Furthermore materials needed to be selected which are characterized by high strength and low weight. 

This multicopter was chosen as one of the example products in the research project due to the importance 

of the design matching of all parts and the required pay-load and operation time (compare Ramsaier et 
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al. (2016)). One light-weight multicopter design was realized in the laboratories of the university (see 

Figure 1 right side).  

3 DIGITAL REPRESENTATION OF THE PRODUCT LIFE CYCLE  

The aim of the underlying research is the holistic integrated digital description of the product life cycle. 

The product life cycle includes many technical disciplines (e.g. requirement management, design, 

engineering, simulation, production, costing, maintenance, ...) and therefore requires cooperation of 

many people and the interaction with many different software tools. This integration process is 

supported on the human resources side by complex matrix organization forms which take into account 

both the technical and project related organizational alignment. On the technical side this integration 

process is currently focusing on complex PLM software systems which aim to achieve the integration. 

Immense efforts by research and industry result in numerous publications addressing the product 

modelling issues. Also graph-based approaches were analysed since the early nineties of the last century 

(compare Finger and Rinderle (1990). Several research publications focus on product life-cycles such 

as Le Duigou and Bernard (2011), on integrated product and process models (for an excellent overview 

see Eckert et al. (2015). The distinctive approach in this project is the application of an engineering 

framework of graph-based design languages, which allow the reuse of pre-existing engineering design 

models and know-how (Till et al.2016). These design graphs generated from design languages are based 

on UML (Unified Modelling Language). UML is the primary modelling language in computer science 

- computer science is known for its very fast development cycles which require very powerful abstract 

description forms (i. e. modern graphical modelling languages) for the software development process 

and highly automated development tools to achieve these extremely short innovation cycles. It is one 

main hypothesis in this project that the product development processes for conventional project can 

greatly profit from the basic ideas and theories behind these automated development tools and from 

graph-based design languages.  

The concept of graph-based design languages (see e.g. Rudolph 2002) has evolved over the last ten years 

into a generic framework for the definition of computerized design processes. Generally, a graph is a 

representation of a set of objects (i. e. the graph nodes) where some pairs of objects are connected (i. e. 

the graph edges). The interconnected objects are represented by mathematical abstractions which can be 

called “nodes” and the links are as well represented by abstractions which can be called “edges”. Figure 

2 shows a design graph for the multicopter. 

 

Figure 2. Structure of a design graph 

Rudolph (2003) and co-workers have developed a consistent design system to represent geometry and 

other forms of information using graphs and have built a graph-based design language which can be 

described by means of the underlying design language process (Figure 3). 

The product can be abstracted to its parts and their abstract geometry. The parts can be organized into 

the class diagram which represents the vocabulary of the design language. This vocabulary can be used 

together with rules in a production system in order to generate the geometrical model of the product. 

  

Multicopter

Nodes

Edges
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Figure 3. Design Language Process  

In principle, graph-based design languages consist of a meta-model that stores all relevant parametrical 

and topological design information and acts as a centralized model repository (Arnold and Rudolph 

2012). It uses a set of design rules and a design compiler that executes the design rules and automatically 

derives the analysis models of the respective design domains (CAD, CFD, FEM, . . . ). The formalisms 

of design languages are discussed in depth in Alber and Rudolph (2003). Applications are for instance 

shown in Kormeier and Rudolph (2006) and Groß and Rudolph (2011). 

The design language aspect of being ‘graph-based’ allows modifying topology (i.e. the question whether 

a certain object, property or behaviour exists) which can be changed as easy as the design parameters 

contained in a node of the graph (Arnold and Rudolph 2012). Design languages offer therefore a 

combined manipulation scheme for design topology and parameters. In the graph based design language 

(Figure 4), the engineering objects are represented by the vocabulary and the model transformations are 

represented by the rules, the grammar of the design language Groß and Rudolph (2012). 

 

Figure 4. Process chain with graph-based design language (compare Groß and Rudolph 
2012) 

In a so-called “production system”, the rules are executed in order to instantiate the vocabulary classes. 

This compilation process builds up the central data model. In this project, the definition of the 

vocabulary is expressed in the Unified Modelling Language (UML), an international standardized 

modelling language (Groß and Rudolph 2011). The UML has been developed by software engineers 

and provides many features to model data to describe object-oriented software (Groß and Rudolph 
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2012). The latest version of UML 2.5 was released in June 2015. One decisive advantage is the 

possibility to compile UML models; this characteristic lead to the decision to employ UML as a basis 

for the graph-based design language. From this high-level central data model, different interfaces 

generate domain specific, generic models such as geometry models or simulation models.  

A machine capable of compiling the graph-based design languages is the” Design Compiler 43” (IILS 

GmbH 2016). This complier was developed by the IILS mbH (http://www.iils.de) in cooperation with 

the University of Stuttgart, which is one of the partners in this project. The design compiler is an eclipse-

based software tool for the compilation of design languages formulated in UML (Arnold and Rudolph 

2012).  

4 REPRESENTATION OF PRODUCT FUNCTIONS 

4.1 State of the art   

One may speculate that the fundamental concepts of function models originate from Rodenacker (1976). 

He refers to function models as "logical effect relation" (in German "logischer Wirkzusammenhang"). 

Numerous research activities have dealt with the development of function models - an excellent review 

was collected by Eisenbart et al. (2016). They were able to identify two main concepts of a function: 

• A function describes the ability of a system to achieve a goal or fulfil a given task by showing 

certain behaviour. 

• A function describes the transformation, conversion or change of states of distinct operands (i.e. 

typically specifications of material, energy or signals). 

Consequently, a function model can be any kind of representation of one or more functions and 

respective logical relationships. A standard convention in mechanical engineering literature is the 

function structure after Pahl et al. (2007). Figure 5 shows a function structure representing on main 

function of the multicopter - the generation of propulsion.   

 

Figure 5. Function structure of the multicopter acc.to the notation of Pahl et al. (2007) 

Here only the function propulsion in forward direction (not in upward direction) is shown as it exhibits 

an appropriate complexity in order to explain different perspectives of function modelling in later parts 

of this paper. In the lower left corner on Figure 5 a possible initial state of the multicopter is shown - a 

horizontal orientation. In order to generate propulsion such multicopters need to be inclined so that a 

movement in direction of the lower rotors is generated. A control system uses sensors at the multicopter 

in order to get the current inclination angle. According to the current wish of propulsion, a desired 

inclination angle is generated and the current from the batteries to the motors is regulated. The motors 

in combination with the propellers transform the electrical energy into mechanical energy for the uplift, 

but depending on the current inclination also for the propulsion. The regulated difference between front 

and back motors will lead to a desired inclination of the multicopter.  

It is important to note that a function structure is usually not leading to one definite result. Other 

engineers might come up with a quite different functional description of the same partial function; there 

might be differences in size and resolution but also in the ways to express certain functionality. The 
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function structure in Figure 5 was mainly created in order to be able to discuss additional possible 

perspectives. 

It is also important to note that the current study of Eisenbart et al. (2016) showed a large interest of 

engineers in industrial practice towards function models. They had developed a framework for integrated 

function modelling. In this study, 15 out of 17 engineers from industrial practice stated that they are 

willing to apply parts of the framework (at least if certain adaptations are implemented. One might come 

up with the hypothesis that maybe in earlier years the demand for an abstract language was not strong 

enough in industry but has increased in the last years because of the necessity of cross-domain problem 

solving and synthesis. The framework proposed by Eisenbart et al. (2016) includes six views, allowing 

a comprehensive look on the functional logic of a product and enables representing several aspects of 

functional modelling. However, for the integration into a graph-based design language a conscious 

selection of these aspects was necessary in order to achieve product models which can still be handled 

with today's technology. The selection of these aspects is explained in the next subsections.  

4.2 Representation of flows   

The central perspective are transformation processes which are in most cases modelled in relation to a 

flow in time, especially in the models found in industrial practice (Eisenbart 2014). The function 

structure by Pahl et al. (2007) as shown in Figure 5 is strongly focused on this perspective.  

4.3 Representation of states   

One central function modelling perspective can be referred to as "state view" and can either represent a 

certain situation that the system resides in (for instance in real-time state-charts compare e.g. 

Heinzemann et al. (2013) or the states of operands (operands are sometimes also described as flows) 

before and after a transformation process (Eisenbart et al. 2016). In the study of Eisenbart et al. (2016) 

12 out of 14 mechanical designers from industry considered the state perspective as useful. In the 

function structure after Ehrlenspiel and Meerkamm (2013) a state perspective is included. This inclusion 

was amongst other identified as helpful for designing products for recycling (compare Phleps (1999)) 

and for designing diagnosis functionalities (compare Stetter and Phleps 2011). A very similar notation 

which is easier to understand for persons from other domains by depicting the transformation processes 

by means of block arrows was proposed by Stetter and Simundsson (2016). Figure 6 shows a function 

structure including states according to this notation (the modelled partial function is identical to 

Figure 5) - here also actors and hierarchies are shown (compare Section 4.4). 

  

Figure 6. Function structure of the multicopter including states, actors and hierarchies 
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In this special case it is rather obvious that a function structure including states is easier to understand 

and may foster a deeper understanding. However, there can be no denying of the fact that this advantage 

might be rather small for products which mainly rely on transformation processes. Also the inclusion of 

states will automatically lead to larger depictions of the same product functions thus endangering the 

clarity of a function model. Modern technology offers many possibilities to enhance clarity (for instance 

a view without states even if they were modelled) therefore the authors conclude that the advantages of 

an inclusion of states will outweigh the possible disadvantages. 

4.4 Representation of actors and hierarchies   

A more controversial aspect may be the question if actors (e.g. the elements of a system which carry out 

a transformation process) should be part of a function model. One of the central advantages of a function 

model can be that it is an abstraction of a concrete technical system and is therefore less solution specific. 

It is often hypothesized that less solution specific models can lead to a larger solution space and may 

foster the development of more innovative solutions. However, it is important to note that function 

models are very often used to analyse and explain existing systems. The experience of the authors shows 

that a majority of function models is created with at least a virtual model of a rather concrete technical 

system. In such cases the transformation from the system to the abstract functional model is much easier 

if function carriers - i. e. actors - are mentioned, especially for persons not regularly concerned with 

functional modelling. Also the function modelling framework of Eisenbart et al. (2016) includes an actor 

view and a majority of the engineers in industry in their study considers this view as useful. Still, for 

innovative solutions design engineers should always be aware that the represented actors only show one 

solution possibility and can always be replaced for a better product. Such representation can foster a 

beneficial (feedback-)cycle between abstract and concrete. Figure 6 shows a function structure including 

actors. These actors allow a sensible connection of product functions with the sub-systems of this 

product thus leading to a more complete depiction of the product logic.  

The function structure in Figure 6 additionally includes a visible hierarchy of flows which is also an 

important part of the function structure of Ehrlenspiel and Meerkamm (2013). They describe three 

different types of linking possibilities of secondary flows to primary flows (types: condition state, 

process state, additional state). In Figure 6 the primary flow is the material transition of the multicopter. 

One secondary flow of energy is connected as a condition (C) to the transformation "achieve targeted 

inclination in order to generate propulsion". Here the (controlled) energy in the secondary flow is a 

prerequisite - a condition - for the transformation in the primary flow. Another secondary flow is a signal 

flow starting with a process state (P) - the current inclination angle of the multicopter. Its digital 

transformation is again a condition (C) for the regulation processes in the motor controller. With a small 

adaption it is also possible to include this kind of hierarchy into the function modelling framework of 

Eisenbart et al. (2016). The consideration described in this section were the logical basis for an 

integration of functions into a graph based design language which is described in the next section. 

5 DIGITAL REPRESENTATION OF PRODUCT FUNCTIONS 

This section explains the integration of function models into a graph-based design language. The logical 

basis for the integration is the class diagram which is explained in the next sub-section. The actual 

integration is realised by means of the production system and is explained on the basis of the product 

example multicopter in section 5.2. 

5.1 Class Diagram for function modelling 

In order to maintain the general nature of the graphical design language, a stand-alone class diagram for 

the function modelling framework has been established which is shown in Figure 7. 

In addition to the classes several types of connections (links) are visible. Links in blue colour indicate 

associations, which can be understood as a "has a"-relationship whereas links in black colour are 

inheritance, which can be understood as a "is a"- relationship. Basically, the modelling process starts 

with defining the requirements of the product. Some of these (functional) requirements are mapped to 

product functions. This mapping is realised by assigning unidirectional associations. A requirement has 

a function with whom it is fulfilled. The function can have several self-associations.  
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Figure 7. Class diagram of the function modelling framework 

One function may be introduced to prevent or cause another function or maybe one function is required 

for one another. These associations can be used to create relation oriented function models such as the 

function models used in TRIZ (compare e. g. Herb (2000)). Every function is split up into one to several 

operations. The classes Change, Divide, Store, Transform, Transfer, Unite and Branch inherit from the 

class operations, which means they are an optional layer to specify the type of operation more precisely. 

Operations can have one or several Actors, through which they are realised as well as two or more States. 

States, which are Mass, Energy and Information can be changed by operations. Therefore one state can 

be linked as an input state whereas the other one can be linked as an output state.  

The classes from Figure 7 are used in the design language multicopter to implement product functions. 

Therefore the class Actor is integrated into the multicopter class diagram. Every Part of the multicopter 

can be seen as an actor.   

5.2 Function modelling within the design language multicopter: First Results 

For the multicopter design language the following three requirements where stated. First, the multicopter 

shall be able to fly. Second, the multicopter shall be able to fly in a specified direction and third, the 

multicopter shall be able to yaw while hovering. For every requirement a function is introduced with 

which the requirement is fulfilled. For the second requirement, the function "generate propulsion" is 

introduced and described in this section. 

In graph-based design languages the above mentioned rules (which accompany the vocabulary) are 

formulated with model-to-model transformations and with two sides for each rule. On the left hand side 

(LHS) of the rule the instances are formulated which the engine shall search within the design graph. 

The right hand side (RHS) of the rule shows what transformations are to be done by the engine. This 

distinguishes the right hand side (result of the rule) form the left hand side (input of the rule).  

For function modelling the rules were split up into two different subprograms. In a first subprogram, the 

functions are modelled as described above. Only the actors are left blank in this stage. After designing 

the multicopter, the second subprogram maps the parts of the multicopter to the functions in their role 

as actors (Figure 8).  

The top of Figure 8 shows the production system. The second rule after "requirements" is the 

subProgram "FunctionDiagram". Its rules have on the left hand side the functional requirements and on 

the right hand side the functions consisting of operations and states. Then three rules are carried out 

which generate the topology of the multicopter and abstract mechatronic relationships. The subProgram 

at the end named "FunctionMapping" describes the mapping of functions to actors and also disposes of 

a left hand side (operations and actors are present but independent) and a right hand side (operations and 

actors are sensibly linked). The "contents" of the rules are shown in the middle of Figure 8. 
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Figure 8. Model-to-model transformations for functional modelling 

The lower part of Figure 8 represents concerned layers of the design graph. The first subProgram 

"FunctionDiagram" concerns the two layers "Requirements Layer" and "Function Modelling Layer". 

The second subProgram "FunctionMapping" additionally concerns the "Multicopter Layer" which 

contains the aggregations and components of the multicopter. This digital representation of product 

functions which was developed and optimised with several product examples and was also established 

for the sample product - the multicopter. It is important to note that it was not a goal to achieve a more 

understandable representation of product functions but a fully logical digital model which can be an 

integral part of a holistic digital product model. 

During the modelling several insights could be gathered: 

• It is possible to integrate a function model sensibly in a digital model which is expressed in a graph-

based design language. It is possible to represented logical links which are not shown in other 

holistic product models. 

• Not all requirements can be linked to a function (only functional requirements). Some requirements 

directly concern product modules or characteristics of product modules such as corrosion 

protection. 

• It is not sensible to try to find functions for all modules and components of a product because even 

for a rather simple product the function model will become very complex and will also cover 

numerous trivial relationships.   

6 SUMMARY AND OUTLOOK 

In recent years the research interest concerning sensible representations of product functions has 

intensified again. It is probable that ever increasing product complexity, a general tendency towards 

domain-spanning products and sub-systems and the trend towards cyber-physical systems are driving 

the wish for an abstract holistic and digital product model. Several current publications show that the 

research interest concerning graph-based design languages has intensified as well. The research 

described in this paper intends to combine functional product modelling with recent advances in graph-

based design languages. The major advantage can be a mapping of the (abstract) functional structure 

with an abstract representation of the product geometry. This mapping can offer an extended product 

logic which may foster more sensible simulations processes and sensitivity studies. In this paper the 

mapping was explained on the basis of a challenging sample product - a multicopter. Currently more 

complex products are being modelled and the advantages and limitations are investigated.  
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