

ICED13/376 1

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED13
19-22 AUGUST 2013, SUNGKYUNKWAN UNIVERSITY, SEOUL, KOREA

SysML-BASED MODEL INTEGRATION FOR ONLINE

COLLABORATIVE DESIGN OF MECHATRONIC

SYSTEMS

Hongri FAN (1), Yusheng LIU (1), Ying LIU (2)

1: Zhejiang University, People's Republic of China; 2: National University of Singapore,
Singapore

ABSTRACT
This paper introduces an online collaborative design platform to support mechatronic design. SysML-

based system modeling method is employed to support system level design. Based on the system

model, domain-specific model generation method is provided to facilitate the designers to enable the

next design phase. The proposed unified recognition algorithm for changed model and dynamic model

integration method enable efficient data flow to characterize the design intents in collaborative design

activities. This platform is implemented on existing commercial tools to promote the practicability.

Finally, a simple work piece conveyor system is taken as the case study for demonstration.

Keywords: online collaborative design, multi-domain, model integration, incremental update

Contact:

Hongri Fan

hrfan

State Key Lab of CAD&CG

Hangzhou

310058

People’s Republic of China

fanhongri@zjucadcg.cn

2

1 INTRODUCTION

The collaborative design has been recognized as a necessary development paradigm for complex

mechatronic systems with the increasing globalization and the reduction of development cycle. It

requires that the widely distributed designers should work seamlessly and timely to perform concurrent

design tasks. Therefore, there is a great demand to enable the efficient design information flow across

different design domains and phases. For the mechatronic product, it should be designed in an

integrated fashion that the design modification in one domain should be propagated to other domains

automatically to notify the engineers as soon as possible. Obviously, multi-domain model integration

facilitates the mechatronic systems design in an integrated manner and the conflict solving in

collaborative design. Usually, the gaps widely exist between different design tools, particularly across

diverse domains. Moreover, as the rise of model-based systems engineering (MBSE), SysML-based

system model promotes the significance of system design phase. As a result, the model integration

across different design phases to speed up the design process becomes imperative as well. In summary,

the issues for design integration of different domains and that of different phases mainly involves: (1)

how to characterize the system model; (2) how to generate domain-specific model from the system

model; (3) how to efficiently execute the dynamic model integration during the online collaborative

design session.

In this paper, a metamodel-based model integration method is proposed to support online collaborative

mechatronic design. Specifically, system design phase and detailed design phase for mechanical

design domain and control design domain are involved. For these issues, the SysML-based system

modeling method is first proposed to describe different aspects of the system structure. From the

system model, metamodel-based mapping rules are defined for the model generation of different

domains. And then the multi-domain model integration method is discussed. Finally, a uniform

algorithm is given to recognize the dynamic change of different domain efficiently for incremental

update. Please note that the focus of this paper is the execution of model integration rather than the

determination for whether the model can be integrated or not. Therefore, the issues like concurrency

and conflict detection are not involved here.

The rest of the paper is organized as follows. After reviewing the related works in section 2, the

method is overviewed in section 3. The next four sections elaborate the system modeling, model

generation, model integration during collaborative design activities and incremental update method

separately. Implementation is provided in section 8 and the conclusion is given in section 9.

2 RELATED WORK

As mentioned in (Cabrera et al., 2008), an integrated modeling paradigm trying to reach a concept of

the whole provided designers a proper view of the system, and the integration definition became

possible as models can be represented in a common language. Qamar et al. (2010) described a multi-

domain model integration framework to identify and solve dependencies across domains. It

demonstrated that efficient design solutions and reduction of time are possible with concurrent multi-

domain models integration. However, the critical model integration algorithm for information

exchange was unimplemented. It was yet impossible to achieve model generation because of the lack

of model transformation method. Chami et al. (2010) proposed an integration framework implemented

by several linkage levels of SysML model with domain specific models, including requirement level,

element level and attribute level for flexibility. A rough prototype with client/server structure was

proposed to demonstrate the idea. However, as stated by the authors, lots of critical components like

the communication protocol between server and client remained to be developed. Bajaj et al. (2011)

introduced a collaborative, model-based integrated system platform－SLIM to federate domain-

specific models such as simulation and optimization with the system model. It provides multiple types

of model-connectivity patterns to connect the SysML-based system model to externally-defined design

and analysis model. For instance, the CAD model parameters can be connected to the system model

parameters at a fine-grained level. However, the connectivity would be invalid if CAD model

parameters were not correspond exactly to the system model properties or if the topology of the CAD

models is changed. The origin of the problem is the direct parameter relationship. Therefore, bi-

directional model generation is critical to support the model integration for collaborative design

between system-level design and detained design and that of different domains, and this point was also

highlighted in (Qamar et al. 2010) and (Shahid, 2011).

3

3 METHOD OVERVIEW

The main idea of the method is to integrate the SysML-based system modeling platform with existing

commercial CAD and control design platforms to provide a practical, useful solution for mechatronic

system design. Meanwhile, the efficiency should be ensured to support online collaborative design.

The overall structure of the proposed framework is shown in Figure 1. Usually, the design procedure

starts with the system design until the system model is finalized. To facilitate the system design,

SysML is employed due to its powerful extendibility to represent domain specific semantics. The

extended profiles in this study involve the mechanical, control and kinematic domains to support

characterizing different aspects of the system.
SysML-based

System design

Communication Protocol

Server

Client

CAD Design

Changed

Model Data

Add-in

Control Desgin

Client

Figure 1 Overall structure of the platform

When the system design is finalized, the domain-specific design model should be generated by model

transformation to enable next design phase. During the detailed design, the high-level system model

acts as the server side to maintain the model mapping and transmission between involved domains

while domain specific model stands for the client site. Collaborative session can be triggered by either

server or client site. Client only contacts with the server to dispense the changed model data. For every

site, as shown in CAD client, a plug-in resides in it to efficiently accomplish the collaborative design

task such as recognizing, receiving and sending the changed model data. Moreover, to exchange model

data between heterogeneous design systems, corresponding communication protocol is also necessary.

To illustrate this platform, the MagicDraw™ is selected as the system design tool while CATIA™ and

Matlab/Simulink™ for CAD design and control design respectively. However, the proposed method

can be used for other platforms also.

4 SYSTEM MODELING FOR MECHATRONIC DESIGN

During system design, designers need to model the system to get the abstract system structure which

will direct the subsequent detailed design activities. Generally, the system structure model is finally

represented by the high-level mechanical and control components. Here, for the control subsystem,

two methods are available to represent the controlled plant. One is the causal modeling technology,

which is implemented by employing a transfer function of the mechanical plant whereas the other one

is the acausal modeling for system model which is widely used in uniform multi-domain simulation

tools such as Matlab/Simscape, MapleSim and Dymola. The former method is less practical in system

modeling as it’s difficult to get the transfer function of the plant for designers. Furthermore, the

incremental change propagation becomes impossible since the transfer function needs to be completely

recalculated once the mechanical plant changes. Moreover, the latter facilitates the model integration

with the simulation model and thus is recommended. According to the analysis, the profile should be

defined based on the extension of SysML for modeling the mechanical, control and kinematics

perspectives of the system. The adopted mechanical profile, as shown in Table 1(a), has been

elaborated in (Fan et al., 2012) and thus is ignored here. Similarly, the control model profile is adapted

from the stereotypes defined by (Cao et al., 2012). The core concept is Function Block(FB), which is

defined in IEC 61499 to describe the high-level functional unit for control system. Taking the strategy

“CascadeCompensation” shown in Table 1(b) as an example, it is modeled as a composite FB that

includes the comparer FB and controller FB, connected by the data connector through data ports. The

composite FB has an output data port which sends the signal to the controlled plant and an input data

port to receive the output of controlled plant for comparing. The controller FB needs to be replaced by

a concrete one like PID, which depends on the controlled plant. Based on these profiles, the

mechatronic modeling profile is given to embody them as a whole. These profiles are defined by the

“light-weight” method as it is easy to be implemented in the existing tools. In SysML, the Block is a

4

modular unit of a system which can represent both logical and physical objects. Therefore, the

stereotypes defined in this study are mainly extended from it for simplicity.

4.1 Kinematics Modeling Profile
The kinematics model is represented by the physical models and motion constraints between them to

describe the physical structure rather than the mathematics equations. It enables the designers to model

the mechanical system by connected block diagram. Moreover, it’s very convenient to merge it into

control design model to enable designer to design the mechanical and the control system in one

common environment. Integrating it with the multi-domain simulation model like the SimMechanics

and Modelica is also feasible as they share the same acausal modeling ideology, which result to similar

meta-model mechanism. The related meta-models are defined as shown in Table 1(c). The main

content of the meta-model includes two parts. The first part is the counterpart conceptions of the

controlled physical part. The second is defined for online collaborative design. In the first part, the

complete physical system is represented by the «KinematicSystem», which consists of the kinematic

part for representing the rigid body and kinematic pair for joint. Kinematic part owns several

coordinates, and the position is represented by a vector and orientation by a matrix. In addition, the

matrix describes the inertia for the part while the vector represents the axis of the kinematic pair as

well. The energy port through which the energy flows in/out of the part references the coordinates to

indicate which anchor point it connects to. The second part involves the id information for part and

pair, the usage will be elaborated later.

Table 1 System model Profile definitions

(a) Metamodel of the mechanical profile

 (c) Kinematics modeling profile

(b) CascadeCompensation composite FB structure

(d) Mechatronic system modeling profile

4.2 Mechatronic system modeling profile
Mechatronic system modeling needs to combine the multi-perspective models together to represent the

system structure completely. For this purpose, «MechatronicSystem» stereotype is defined to represent

the overall structure of the mechatronic system, which has mechanical, control and kinematics

subsystems, as shown in Table 1(d). They are represented by the «MechanicalSystem»,

«ControlSystem», «KinematicSystem» stereotypes respectively. The control system includes the

control strategy and specific controller. Such a profile enables the designer to freely configure the

control strategy and the controller to generate alternative system structures.

5 DOMAIN-SPECIFIC MODEL GENERATION

For detailed design model generation from system design, meta-model based model mapping method

is developed here. Actually, how to deal with the control model mapping is illustrated in (Cao et al.,

2012), and mapping for the kinematics model is implicitly provided in sec 4.1. Therefore, only the

mapping between system model and detailed mechanical design model is explored here.

5.1 Detailed mechanical design model generation
Generally, the assembly model is composed of sub-assemblies, parts and the relationships between

them. The relationship describes mechanical constraint between geometric features of parts. The

metamodel proposed above is constructed by such an ideology as well. However, the feature

configuration defined in system model has no counterpart in CAD systems, and thus should be mapped

5

based on the sub constraints. Table 2 shows the mapping rules from system model to CAD model.

Here, CATIA is used as the exemplification. The “ZeroDof” stereotyped by «DofCategory» means the

part is fixed, i.e. the “Fix” constraint coded as “catCstTypeReference” in CATIA API. For the feature

configuration, it probably needs more CATIA constraint to get the assembly. Like the “CenterTouch”,

it is implemented by the combination of contact constraint and the coincidence of the center points for

involved planes.

To generate the CAD model automatically, the part models are predefined and stored in database for

the part primitives in system model, and the corresponding features are indexed as well. The detailed

process can be referred in (Fan et al., 2012).

Table 2. Mapping rules between system model and CATIA model.

System Model CATIA

MechanicalSystem CATIA_Assembly product

Part CATIA_Part product instance

Feature
Hole Hole CATIA

Feature Shaft Pad

DofCategory ZeroDof catCstTypeReference

CATIA

Constraint

DofOrientation

RotMatch catCstTypeParallelism

RotReversed catCstTypeAngle(value=180°)

RotOriAngle catCstTypeAngle

PositionConstraint Center-Aligned catCstTypeOn

Feature

Configuration

CenterTouch
catCstTypeSurfContact,

catCstTypeOn

HoleShaftMatch
catCstTypeParallelism,

catCstTypeOn

PlaneDistance catCstTypeDistance

Coplanarity catCstTypeOn

5.2 Coordinate system harmonization
It should be highlighted that generating the domain-specific models independently doesn’t meet the

requirement of multi-domain collaborative design. As the kinematic model needs the spatial

information, like position from CAD model, it’s recommended to have these models share the

common coordinate system (CS). For example, the default gravity vector in SimMechanics

environment is set to “-Y” direction which is easy to understand for control designer. Therefore, to

make the gravity vector points to the same direction for generated CAD model, the “ZeroDof”

constraint is employed for the reference part. This constraint removes all DOF to make the part keep

stable. The desired CS is obtained if the reference part points to expected direction. Fortunately, this

can be implemented by generating the “catCstTypeReference” assembly constraint and set the attribute

to “CATCstVal_Reference_Absolute” for the part beforehand.

6 MAPPING BETWEEN SYSTEM MODEL AND DOMAIN-SPECIFIC MODEL

As mentioned before, the system model, CAD model and control model coevolve in online

collaborative design activities. The essence of such design is how to relate these models together to

allow efficient data flow between them. Generally, the issues involve: (1) During the transition from

system design to detailed design phase, how to establish the connection between system model and the

domain-specific models, i.e., the distributed counterparts; (2) How to find the changed model for the

designed systems to achieve incremental update; (3) What information is needed to propagate the

design intent, specifically from the control site to CAD site.

6.1 Domain-independent model identification
Generally, there are counterparts in other design systems for a given part. Generating the model

connections for them is the prerequisite to support collaborative design. To build and maintain the

relationship between them, the unique ID is used here. As the model changes freely in separated

platform, it is provided for model indexing. This ID property accompanies the model at the

background in every design system and keeps stable. It is initialized for every part in the system model

file:///C:/CATIA/B19/CAADoc/Doc/online/CAAAuiTechArticles/CAAAuiConstraintTypes.htm%23220000

6

and assigned to the domain-specific models during the generation. Obviously, the model needs to

communicate with the outside requires the ID property. Every design system can find the counterpart

exactly according to the ID index. In this way, the relation for all counterpart models is established.

6.2 Dynamic model generation
New models can be inserted arbitrarily when the design evolves, which necessitates adding the

counterparts in other design systems. The model mapping across multi-domains for this case is

achieved by two steps: (1) Mapping to the system model to reflect the new model at the high-level

structure; (2) Based on the renewed system model, reusing the domain-specific model generation

method to create the new model for the corresponding design systems. However, the direct mapping

between domain-specific models is not preferred since the following reasons: (1) system model

requires latest structure scene to relate it with functional and behavior models; (2) it removes the

coupling between various domain-specific models since the system model actually acts as the interface

to the other sites; (3) it induces the point-to-point topology structure at the model integration level.

As an example, the model mapping between the CATIA, system model and the SimMechanics model

is defined in Table 3. It is easy to create the counterpart for the physical entity. For the CATIA joint,

the basic ones can be mapped directly while some others need to combine several SimMechanics joints,

like the CATIA CV joint, which needs two universal joints to represent it as the counterpart. How to

represent the left complex CATIA joint by the composition of basic SimMechanics joints is under

development. Please note that the ID property should be initialized from the source platform in

dynamic model generation. For instance, if the CATIA site adds a new part, the ID should be set and

then the others can maintain it to establish the model connection after receiving it. As the complex

CATIA joint ultimately relates with more SimMechanics joints, a virtual counterpart is created at the

background which includes the combined SimMechanics joints. As a result, the virtual counterpart

holds the ID property and handles the communication task for inner joints.

Table 3. Multi-domain Model mapping

 CATIA System SimMechanics

M
o
tio

n
 co

n
strain

t

Revolute Rotational Revolute

Prismatic Translational Prismatic

Fix Fix_Abs Ground

Gear Gear Gear constraint

Screw Screw Screw

Universal Universal Universal

Spherical Spherical Spherical

Rigid Fix_Rel Weld

Cylindrical Cylindrical Cylindrical

Planar Planar Planar

Point Curve PointAlongCurve Point-Curve

CV CV double Universal

Slide Curve SlideCurve N/A

Rack Rack N/A

Cable Cable N/A

Point Surface PointOnSurface N/A

E
n

tity

CATIA_Part KinematicPart Body

CATIA_Assembly KinematicSystem subsystem

N/A Acutator/Sensor Acutator/Sensor(Body/Joint)

6.3 Qualitative relationship model
During collaborative design between detailed mechanical design and control design, it is easy to renew

the related physical parameters for control design when they are changed in CAD systems. However, it

is not a trivial task for the reverse change. If the request is to change the design parameter of a physical

part, it can be directly reflected in the CAD model. Otherwise, the solution is undetermined. For

example, supposing the request is to change the length of a part, which can be handled automatically

as the length is a design parameter. However, if the request is to change its mass, it is impossible to

7

decide which parameters should be changes since the mass is related to the volume and even the

material. Therefore, a dependency model is proposed in this study to maintain and facilitate the change

propagation between the control design domain and mechanical design domain, as shown in Figure 2.

The dependency model includes the result property which represents the consequent parameters and

the cause property stands for the cause parameters. With its help, the system model is able to

determine which physical parameters should be adjusted conveniently; especially the change request

comes from the control design domain.
QualDependency

<<datatype>>

Result

1

1

<<datatype>>

Cause

1

*

Figure 2.The Dependency model

Noticeably, although the relationship facilitates the system model to reason which parameter needs to

change, it’s not capable to cover all possible situations. When the CAD site receives the update

notification for a part, some other statuses are possible: (1) the part still exists but the structure has

changed which results to the relation model out of date in the system model. (2) The part has been

removed which results to other counterparts become “dirty models”. In such scenarios, an update

should be triggered by the CAD site immediately to keep model consistency. The reason that these

cases happen is mainly that there exist conflicts during cooperative multi-domain design, which is

beyond the focus and left to be discussed in the future.

7 INCREMENTAL UPDATE METHOD

Incremental update from one design system to the others relies on two sub tasks: how to find the

changed model from the local design system and by what communication protocol to distribute the

information to other sites. For the first task, a unified algorithm is proposed to recognize the changed

part, which can apply on different design platforms. Based on it, the communication protocol is

defined for what should be sent out and how to specify the incremental semantics.

7.1 Unified recognization algorithm for changed model
As the change might happen on the arbitrary design system, the recognization algorithm for the

changed model needs to be developed for all involved systems individually. However, to develop a

unified algorithm, the model structure should be analyzed for involved design models. From the object

oriented perspective, the design model structure consists of elementary model and relationships

between them. In the system model, the part and feature configuration stands for the model and

relationship in mechanical modeling profile respectively. The FB and the connector present them in

control modeling profile; and the kinematic part and kinematic pair are the corresponding concepts in

kinematics modeling profile. In the CAD model, the mechanical part and the motion joint implement

these concepts. In the control model, the block and line represents them. Based on the above analysis,

the core problem for the unified algorithm is how to find the changed parts and relationships.

Supposing the model structure consists of M (models) and R (relationships) at time

t1: 1 2 i}{M = m ,m ,...,m , 1 2 j{ }R = r ,r ,...,r and 1 2 g{ }M' = m' ,m' ,...,m' , 1 2 h{ }R' = r' ,r' ,...,r' at time t2. Therefore,

the contents of M and R at t1 should be recorded first and then the algorithm can apply to find the

changed models and relationships at t2. The prerecording process is shown in the left of the Table 4.

The attached id property is used for the domain-independent index across different design systems to

support online collaborative design.

The main principle of the algorithm shown in Table 4 is constructing the model lists ML1, ML2 at time

t1 and t2 first and then indicating the models in ML1 which are not existed in ML2 as removed. The new

added models are recognized by indicating the models in ML2 which are not existed in ML1. For the

left models in ML2, checking the model properties changed or not. Therefore, all changed models can

be found quickly. This algorithm can find the changed relationships as well. Applying it to specific

design system requires it to provide the capability to get the pointers to all models, relationships and

corresponding properties. Moreover, the model change criterion, i.e., properties comparison method

should be implemented separately. Finally, the separated process for “New”, “Changed” and

“Removed” models depends on particular requirements and thus needs customization as well.

8

Table 4. Algorithm Description

Preparation of the algorithm: m

m

m

 Set the status as "Removed" for ;
 Output id, and the status information for ;
 .add(); // Store the resource for Re cycling
 .clear();
 Return;
For ea

s
s

removedModelList s
ML

m

m m

k

k

ch item in :
 // Model is removed if it doesn't exist in .
 If . then . "Re moved";
For each item in :
 // It's a new model if it doesn't exist in .
 If :

m

s ML
l

s p l s status
m l

ML
m ML

m m

m

m k m

 in & "Re moved";
 If null: // Reuse a local resource in .
 = ; "Changed";
 else If (.NotEmpty())

m

s ML s .status
s ML
s .ptr m .ptr s .status

removedModelList

m m k

m m

 // Reuse a global resource otherwise.
 .pop(); = ;
 "Changed"; .add();
 else
 // Create a new

ms removedModelList s .ptr m .ptr
s .status ML s

m

m m m m

m m k m m k

m m k

 if no resource available.
 = new (); . = new (); . = "New";
 . = . ; . = . ; .add();
 else if (. = . & &

m

s
s s s id guid s status
s ptr m ptr s prop m prop ML s

s ptr m ptr

k m m

m

m m k m

m

 ! .)
 // The model exists in , but properties change.
 . "Changed";
For each item in : // Process the changed mo

.equals()

;

.

.

m s prop
s ML

s prop m s .status
s ML

prop

prop

m

m

m

m

del data.
 If (. "New")
 Process for new model;
 . "Latest"; // Reset status.
 If (. "Changed")
 Process for changed model;
 . "L

s status

s status
s status

s status

m

m

m

atest";
 If (. "Re moved")
 Process for removed model;
 .remove(s);
 .add();
Release();
End

s status

ML
removedModelList s

l

m

r

: Model properties, including the
 detected properties for the model.

: Relationship properties, including
 the detected properties for the relationship.

: A globally unique

prop

prop

id
m

r

m

 identifier.
: The pointer of the model.

: The pointer of the relationship.
: It indicates the change mode,

 i.e., "New", "Changed", "Removed", "Latest".
: A custom structure for

ptr
ptr
status

s
 m m m

r

 r r r

model,
= { , , , }.

: A custom structure for model,
= { , , , }.

: A list for storing the removed model.
: A list for storing th

s ptr status id prop
s

s ptr status id prop
removeModelList
removeRelList

k

m m m m

m m k m m k

e removed relationship.
Begin:
Create a model list and a relationshiplist .
For each model in
 = new (); . = new (); . "Latest";
 . = . ; . = . ; .

ML RL
m M

s s s id guid s status
s ptr m ptr s prop m prop ML

m

k

r r r r

r r k r r k r

add();
For each relationship in
 = new (); . = new (); . "Latest";
 . = . ; . = . ; .add();
End

s
r R

s s s id guid s status
s ptr r ptr s prop r prop RL s

Algorithm:

 m

2

k
k

Begin:
// Construct a new pointer list for all models at
List = new List();
For each model in model structure.
 .add().

.empty() // No model exists now.
For each item in :

If :

.
l

l m
l

s ML

t

m

7.2 Communication protocol definition
Essentially, the parametric dependencies across different design systems determine the communication

contents in collaborative design. To reduce the transferred data to minimum, model change

propagation should be based on the parameter rather than model itself. As mentioned above, the model

changes in mechanical design must flow into the kinematics models to make the control design

proceed successfully. Similarly, the parametric change for mechanical structure may be issued by the

control design site. Therefore, the communication protocol can be divided into two parts:

communication between system model and mechanical model; and that between system model and

control model. The goal of the communication is incremental change propagation, which means only

the changed parameters should be communicated with other design systems. According to such a

principle, a changed-property-based pattern for the protocol content can be defined for the

communication, as shown in Figure 3(a). It mainly includes the model name, ID and the status

information to show which one is changed and what the changed mode is. The changed properties

should specify the new values for “Changed” mode and all properties should be given for “New” mode.

If the mode is “Removed”, no property needs to be specified. Obviously, if the model is new added,

the ID property will be stored by the receiver to relate the counterparts together. This uniform pattern

applies to the change of model as well as the relationship concept mentioned above. According to the

uniform pattern, an example for propagating the part model change from CAD model to system model

is shown in Figure 3(b). It represents the communication content for a changed CATIA part model in

CAD domain, all the changed information needed by control design is included and further used for

updating the counterpart model on control design platform. From the control model to system model

direction, it only includes the model ID and recommended parameter information. The status

information is not required because it is always the “Changed” in such case.

Figure 3. (a) Uniform communication style (b) Communication from CAD client to server

9

8 IMPLEMENTATION

To demonstrate the proposed method, a simple work piece distribution station is used as shown in the

left of Figure 4. It consists of two mechatronic subsystems: a feeder unit (left) that provides the work

piece and then the transfer unit (right) can transfer it to next station.

8.1 SysML-based system modeling
The MBSE tool Magic Draw 16.5 with SysML plugin is used to model the system design result. As

shown in Table 5(a), the whole system is modeled by «MechatronicSystem» stereotype and named as

“Conveyor”, which has two subsystems. The conveyor has a logic controller which is defined by

«ControlSystem» stereotype to coordinate two subsystems. Moreover, how to place the physical

structure is represented by the mechanics property. For the kinematic models, they are embedded in

subsystems like the “Slider-Crank” and no such model exists in the top conveyor system. Obviously,

the whole system is modeled as a distributed design.

The mechanical structure of the feeder is defined as shown in Table 5 (b). The feeder is actually a

Slider-Crank mechanism which includes the base, crank, rod and slider parts. These parts are

connected by constraints. For example, the base is assembled with the crank by “HoleShaftConj” and

the constraint is applied to assemble other parts, as shown in the Table 5 (c). The mechanical structure

of the transfer is defined similarly and it can be assembled with the feeder similarly.

The two subsystems have the “CascadeCompensation” control structure as shown in Table 1(b). And

the “ConveyorProtocol” type which tops them is defined to coordinate the logic sequence, as shown in

Table 5 (e). According to detecting the state of the physical systems, it notifies the feeder when it

should provide the work piece and when the transfer can remove it. Essentially, this task is performed

by the “ConveyorECC” component, which acts as a finite state machine to model different system

states driven by events, like the work piece ready event. The state transition is represented by the

«Transition» stereotype between states. The central logic controller is connected with subsystem to

coordinate the sub physical systems, as shown in Table 5 (d).

Table 5. System model for the case.

(a) Conveyor system overall structure

(b) Mechanical definition

of the feeder
(c) Internal structure of the feeder

(d) Control subsystem

(e) Central controller

structure

(f) Kinematic model of the feeder

The kinematics model of the feeder is shown in Table 5 (f), the mechanical part is represented by the

«KinematicPart» stereotype and the joint by «KinematicPair» stereotype. The actuator and sensor are

defined by «Actuator» and «Sensor» stereotypes respectively. As the model directly connected with

control model, the corresponding actuator and sensor are added to merge them into control model.

8.2 Model generation and Incremental update
The CATIA model and the Simulink model are generated as the both ends shown in Figure 4. Control

designer can add the scope block to observe the values. For the incremental update, supposing the

slider instance has been replaced by another one, and then the recognization algorithm finds the

10

changed model data as the XML format shown in the Figure 4. The part ID is reused from the removed

part and the status is set to “Changed”, which notifies the other design sites to change the property

directly on the old part, rather than repeats the removing and adding actions. The qualitative relation of

physical parameters is not extracted since it doesn’t change. The system kinematics model updates

when it receives the changed model data, like the inertia property. Finally, the SimMechanics model

on the control design site is updated based on the system model to maintain the consistency. Actually,

the related rod part as well as the corresponding joints of slider are also changed and propagated to the

control sites, which are not shown explicitly. Moreover, some automatic processes are performed like

the unit transformation and the minimal number is set to zero.

Figure 4. Generated CAD model, control model & the incremental update

9 CONCLUSIONS AND FUTURE WORK

In this study, a model integration based solution for online collaborative design platform is proposed.

To support system design, it provides the SysML-based system modeling method to model different

aspects for a mechatronic system. The metamodel-based model transformation method is provided to

support the detailed model generation. As design involves, the incremental update is also supported

according to the recognization algorithm and communication protocol. The advantages of the method

include: (1) The multi-domain model generation as well as the model connection is provided to

support the online collaborative design of mechatronic system. (2) Benefiting from the central hub of

the system model, other domain-specific design tool can be integrated into this platform conveniently

according to establishing the model mapping to the system model. (3) The uniform recognization

algorithm for the changed model applies to various design systems and can be easily implemented. As

a result, the size of data under transmission is very limited. (4) A prototype is implemented on existing

design systems and thus users on different sites can still use familiar tools.

The system model mainly involves the layout design of the system structure, more aspects like the

function and behavior model can be included to analyze the system design result at early design phase.

In addition, the quantitative relation model can be developed to facilitate the parameter adjustment

from control design site to CAD site. For the proposed platform, only three design systems have been

integrated in this study, more systems need to be considered to enrich the platform in future.

REFERENCES
A. A. A. Cabrera, M. S. Erden, M. J. Foeken, and T. Tomiyama. (2008) ‘High level model integration

for design of mechatronic systems’, IEEE/ASME International Conference on Mechtronic and

Embedded Systems and Applications, Beijing, China, 2008, pp.387-392.

Qamar, A., Törngren, M., Wikander, Jan. and During, C. (2010) ‘Integrating Multi-Domain Models

for the Design and Development of Mechatronic Systems’, Proc. of 7th European systems engineering

conf – EUSEC 2010, Stockholm, Sweden.

Chami, M., Seemiiller, H., and Voos, H. (2010), ‘A SysML-based Integration Framework for the

Engineering of Mechatronic Systems’, Mechatronics and Embedded Systems and Applications

(MESA), 2010 IEEE/ASME International Conference on, Qingdao, ShanDong, 2011, pp.245-250.

Bajaj, M., Dirk, Z., Peak, R., Phung, A., Scott, A., Wilson, M. (2011a), ‘Satellites to supply chains,

Energy to finance - SLIM for Model-Based Systems Engineering, Part 1: Motivation and Concept of

SLIM.’, 21st Annual INCOSE International Symposium, Denver, USA, 2011.

Shahid, H. (2011), ‘Integration of system-level design and mechanical design models in the

development of mechanical systems’, Master Degree Thesis, Stockholm, KTH.

Cao, Y., Liu, YS., Fan, HR., Fan, B. (2012), ‘SysML-based uniform behavior modeling and automated

mapping of design and simulation model for complex mechatronics’, Computer-Aided Design (2012)

doi:10.1016/j.cad.2012,05.001.

Fan HR., Liu, YS. (2012), ‘Integration of system-level design and detailed design models of

mechatronic systems based on SysML and step ap 203 standard’, Technical Presentation, Proceedings

of the ASME 2012 IDETC/CIE, 2012, Chicago, IL, USA.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5547546
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5547546

	20130720_Consolidated_Part211.pdf
	Contribution376_b

