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Abstract 
Selecting among alternatives is a central and frequent decision in design. This selection is 
often done to satisfy multiple criteria and with imperfect information. This paper proposed a 
new method for handling extreme uncertainty in multicriteria decision-making based on 
Analytic Hierarchy Process (AHP) and info-gap models of uncertainty. The method 
foundation is briefly reviewed and it is illustrated on a simple problem. Subsequently, the 
paper formulates a new problem in decision-making with a proposed solution. Instead of asking 
how to exercise “good” (we say good because there is no best) selection practice (e.g., selection 
among alternative product concepts), the decision setup changes to include resources, and the 
question becomes: how to spend them optimally to improve information quality for making 
choices that are more robust. The new method is illustrated on a simple selection problem. 

Keywords: unstructured uncertainty, resource-based decision making, information quality, 
selection 

1 Introduction 

Decision-making activities are always performed under uncertainty conditions. This 
uncertainty reflects the gap between perfect knowledge about the information we need to use 
in our decision-making process and what we actually know. The information we use is often 
imprecise and of varying levels of reliability. These two qualities contribute to the 
information uncertainty.  

Selection among alternatives is perhaps the most prevalent decision making activity in general 
and in design specifically. Many models exist for this activity  [5], however, their treatment of 
the reliability of the information they employ is lacking, complex, or requires assumptions on 
the nature of uncertainties (e.g., the distribution density of extreme uncertain events)  [2]. We 
seek a very user-friendly model that its logic is easy to understand, is simple to use, and its 
results are easy to interpret. The model should be based on simple and minimal data and 
output the robustness of the decision and its reliability. 

In addition, we introduce a novel aspect into the decision-making process: given a resolved 
decision problem with its associated reliability, and available resources; spend these resources 
optimally in order to maximize the decision robustness by improving the reliability of the 
information input to the decision-making process. In product design, such resources would be 
used to perform targeted studies of the most critical aspects of the new design: study new 
technology, build prototypes, etc. 



We are not aware of any published study that connects decision robustness, risk, or 
uncertainty with resources allocated to reduce it. We describe in detail a method for 
addressing this problem, called RBR (Resource-Based Robustness). In the method exposition, 
we assume knowledge of AHP, otherwise, the reader is referred to  [4], or the many others 
books and papers published on it. 

2 Multicriteria decision making under extreme uncertainty 

The proposed method is composed of the following ingredients: 
1. AHP for modeling complex decision-problem by a hierarchy and for organizing 

evaluations  [4], 
2. Arbel’s method for approximate preference articulation (instead of AHP eigenvector 

calculations)  [1], 
3. Ben-Haim’s method for modeling uncertainty  [2], 
4. Linear programming for solving the equations and obtaining a decision, and  
5. AHP for combining the contribution of different levels of the hierarchy. 

We discuss each in turn. 

2.1 Approximate articulation of preferences 

In AHP, a decision-maker (DM) evaluates the candidates for selection using pairwise 
comparisons. Traditionally, the comparisons have been exact values. In an attempt to account 
for DMs lack of exact knowledge or the inherent uncertainty in the environment, Arbel 
described the use of approximate articulation of preferences ijjiij uwwl ≤≤ , where 

njiul ijij ....,,2,1,allfor =≤  and ji ww  is the preference of item i  in relation to j . These 
preferences can be assembled and written as 
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Since all the solutions to the problem posed above are restricted to lie on the simplex 
121 =+++ nwww L , the set of inequalities for a feasible problem form a convex region Ω  

on this simplex. For a 3-dimensional problem, an approximate articulation process will yield 
(at most) six inequalities, and hence this case may be envisioned as shown in Figure 1.  

 
Figure 1: A solution set for a solvable system 

The consistency index (CI) used in the AHP assumes the value zero when pairwise 
comparisons form a completely consistent set. Here, the completely consistent case is 



obtained when all half spaces intersect at a single point on this simplex. Since this will reduce 
Ω  to a point, Arbel argues that the size of this area provides some measure of consistency. 

A solution to the model in equation (1) can be found using linear programming (LP) by 
solving an auxiliary LP problem given by 
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where 0w  is an artificial variable used to identify the existence of a feasible solution. If the 
ordering of preferences is equal in all vertices of the convex hull Ω , it holds for each point 
inside the area.  
Since we address decision problems that are more complex or hierarchical, the solution of 
Equation (2) is repeated for all the comparison matrices of AHP. Finally, AHP method for 
propagating preferences along the hierarchy is used here as well to find an area in the space of 
weights as shown in Figure 1. We can prove that the result we get by working with 
hierarchies is a convex region. Consequently, if the same option is selected as best in all the 
region vertices, it is also the preferred option across the region. 

2.2 Info-gap model of uncertainty  [2] 

One useful classification of uncertain phenomena is to distinguish between structured and 
unstructured uncertainty: structured uncertainty is made of extensive data, from which a 
probability density function can be constructed for predicting mean standard deviation and 
other statistical properties. An unstructured uncertainty, on the other hand, is a total surprise, 
an unexpected event. Unstructured uncertainty is a substantial information-gap between what 
we do know and what we need to know in order to perform optimally  [2]. 

When dealing with severe lack of information we need to be very parsimonious with the 
information that we have. Therefore, we must avoid unverifiable assumptions as much as 
possible. In particular, we will not be able to adopt probability densities, since it is the rare 
events that dominate our concern. Second, we cannot make statistical inferences, as though 
we were facing very structured and familiar uncertainty. Rather than probabilistic reliability, 
the robustness is adopted as a measure of reliability. We define robust reliability of a decision 
as the amount of uncertainty consistent with no alteration of the decision. We now define the 
model of uncertainty and a decision procedure with its associated robustness measure.  

Consider the set of all functions ( )tc  whose relative deviation from the nominal function )(~ tc  
is bounded by ( )tαψ : 

( ) 0)},(|~
)(~)(:|)({)~,( ≥≤

−
= ααψα t

tc
tctctccC  (3) 

where: 
( )tc  is the real function (unknown to us); 

)(~ tc  is the function assessed by us according to the information available; 
)~,( cC α  is a set that contains all the functions consistent with our prior information; 

( )tψ  defines a known envelope within which the function varies; and 
α  is the uncertainty parameter. 



The robustness of a decision is defined as the maximum value of α  consistent with the 
desired value of the decision. Formally, if ( )cqD ,  is some procedure for deriving a decision 
based on the design variables q  and the c . Then the robustness of the decision as a function 
of q  would be the maximum value of α  while keeping the decision intact. 

( ) ( ) ( ) ( ){ }cUccqDcqDq ~, allfor  ~,,:maxˆ ααα ∈==  (4) 

In our case, the decision procedure is solving Equation (1) (or (2)) while requiring that the 
same best alternative (i.e., the choice having the highest lw ) is the same in the feasible region 
Ω . The parameter c  would denote the ranges of preferences described in Section 2.1. We use 
a discrete version of Equation (3) leading to:  

αψαψ ijijijijijijij ccccc ~~~~ +≤≤− , (5) 
or, considering the range [ ]ijij ul ,  we get,  

αψ ijijijij ccu ~~ +=  
αψ ijijijij ccl ~~ −=  (6) 

where 
ijl  , iju  are lower and upper bounds respectively, their difference reflecting the 

impreciseness of the information, 
ijc~ = ji ww  is the assessment of the relative weight of option i  relative to option j , and 

ijψ  is the assessed reliability of the ijc~ parameter (or range). 

Therefore, the decision procedure consists of: 
1. For a given α  and set of values lψ , nl ,,1K= , solve Equation (1) (or (2)) with values 

derived from Equation (6). 
2. Find the minimal value, minα  for which there is a feasible solution (the area Ω  is a point).  
3. Find the maximal value of α , maxα  for which there is a feasible region Ω , and the best 

option with highest lw , remains the same across all Ω .  

The value minα  is needed to account for inconsistent preference articulation and has similar 
role as that of CI or CR in AHP. To illustrate the function of minα  in some problem, Figure 2 
shows a progression from (a) infeasible solution ( 0=α ), to (b) (c) where “rays” (representing 
the constraints in Equation (1)) coming out of the corners begin to separate due to the growing 
imprecision. Finally, at a value of 111.1=α  the areas between the rays meet to start forming a 
feasible region shown in (d). For the same preferences, AHP outputs: CI= 0.61559, and CR= 
1.0614. 

The maxα  is an indication of the robustness of the decision. Higher values of maxα  mean that 
we can be less precise about our information yet, the decision will not change. Higher values 
of maxα  mean that the decision is more immune to uncertainty. When the information is 
precise, the α  parameter will be set to zero. Lower precision will be expressed by higher α  
values. An α  value of one or more will denote a considerable imprecision. After using the 
method for some time, the DM will recognize the meaning of the resulting α  on the outcome 
of decisions, and learn to consider it accordingly. The numbers ijψ  will be used to express the 
reliability of the information source. As in the case of the preciseness parameter, experience 
will tell the DM the influence of ijψ  values on the solutions. In case the reliability is unknown 
and assessed to be no better than any other source, then ijψ  will be set to one. 
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Figure 2: Obtaining feasible area by increasing α  beyond minα

3 Example 

We illustrate the method using a problem of selecting between three plastic injection-molding 
machines. The selection is done between three tiebarless1 machines shown in Figure 3. These 
machines have all been patented; nevertheless, for the sake of the example, consider them as 
three concepts that a design team is evaluating for further detailed development. The decision 
is broken into three main criteria: lifetime, simplicity of parts, and simplicity of maintenance. 
Their arrangement in the form of AHP is shown in Figure 4. 

   
1C  Engel’s tiebarless 2C  Ziv-Av’s, elastic deflection 3C  Ziv-Av’s, no aligning rod 

Figure 3: Three candidate tiebarless injection molding machines 
 

Target

C3 Ziv-Av's no aligning rodC2 Ziv-Av's elastic deflectionC1 Engel's

Q3 Simplicity of maintenanceQ2 Simplicity of partsQ1 Lifetime

level 1

level 2

 
Figure 4: Hierarchy of criteria used to choose a plastic molding machine 

                                                 
1 Machines without the common ties guiding the parallel movement of the moving platen. 



The first and second hierarchy level pairwise comparison values (the relative importance of 
the qualities) elicited from an expert designer are given in Figure 5 and Figure 6, respectively. 
From experience, it is easier to elicit preferences values ( ijc~ ) and reliability measures ( ijψ ) 
instead of ranges ( [ ]ijij ul , ). Therefore, these values are given in the figures. The values of the 
reliabilities were set to 0.1 for all evaluations. Below each pairwise comparison matrix, the 
values of the largest eigenvalue, the CI, and CR are given.  

All the CR are within the limits recommended by AHP (lower than 0.1), even though in the 
second quality comparison (simplicity of parts) the ratio is close to the limit. This consistency 
affects the minimal preciseness value minα required for a viable solution, which as expected is 
high: minα =3.1, compared to α =1, which symbolizes a value with a “regular” precision.  

  Q1 Q2 Q3 

Lifetime Q1 1 5 2.5 
Simplicity of parts Q2 1/5 1 1/3 

Simplicity of maintenance Q3 1/2.5 3 1 
 λmax=3.0183 CI=0.00914 CR=0.0157 

Figure 5: First hierarchy level comparison values 
 

 Lifetime C1 C2 C3 Simplicity of 
Parts 

C1 C2 C3  Simplicity of 
Maintenance 

C1 C2 C3 

Engel C1 1 1/3 1/9 C1 1 4 ½  C1 1 6 1 
Elastic C2 3 1 1/6.5 C2 4 1 1/3  C2 1/6 1 1/6
No rod C3 9 6.5 1 C3 2 3 1  C3 1 6 1 

 λmax =3.067 CI=0.033 CR=0.058  λmax=3.108 CI=0.054 CR=0.093  λmax =3 CI=0 CR=0 

Figure 6: Second hierarchy level comparison values (the comparison between the options, 
pertinent to each quality) 

 

Table 1: Expanded ranges for maxα =8.15 
The Ratio Compared Comparison # Input value ijc~  Expanded ranges  

1 Q1/Q2 5 [0.925    9.0751] 
2 Q1/Q3 2.5 [0.4625  4.5375] 

First hierarchy 

3 Q2/Q3 1/3 [0.0616    0.605] 
4 C1/C2 1/3 [0.0736   0.605 ] 
5 C1/C3 1/9 [0.0205  0.1689] 

Q1: Lifetime of the machine  

6 C2/C3 1/6.5 [0.0339  0.2792] 
7 C1/C2 4 [0.74      7.2602] 
8 C1/C3 1/2 [0.0925  0.9075] 

Q2: Simplicity of parts  

9 C2/C3 1/3 [0.0616    0.605] 
10 C1/C2 6 [1.11    10.8904] 
11 C1/C3 1 [0.185      1.815] 

Q3: Simplicity of   
       maintenance  

12 C2/C3 1/6 [0.0308  0.3025] 

At one vertex of the feasible region, the preferences are 0.136, 0.090, and 0.774, making 
option 3C  the best. This is the best option across the feasible domain and remains as such 
until the value of maxα =8.15. While this says little intuitively at this point, we can calculate 
the pairwise ranges according to Equation 6 and compare them to the original values, see 
Table 1. For example, comparisons 1 and 10 extend even beyond the 1-9 range of AHP saying 
that if other comparisons are as in the Table, it does not matter which value the DM gives for 



these comparisons; they will lead to the same choice. The other ranges are also quite large 
suggesting that this decision is quite robust to uncertainties. Note that the ranges such as 
[0.0205  0.1689] are also large being reciprocals of a large range, i.e., [1/48 1/5.9]. 

4 RBR – Maximizing robustness under resource constraints 

The previous section dealt with fixed given information reliabilities. However, in reality, 
DMs have resources to spend in order to collect information for improving the quality of their 
information and decisions. Given limited budget, a DM needs to choose those information 
sources that have the most impact on the robustness of the decision, and distribute the funds 
optimally between them. The DM could have two different goals: 

1. Maximize decision making reliability/robustness given fixed budget, or 
2. Minimize cost of improving information quality for attaining a prescribed robustness. 

In this paper, we address only the first goal. The method called Resource-Based Robustness 
maximization (RBR) includes two additional steps beyond those of the regular method (see 
Section 2): 

6. Reich and Levy's method for resource allocation in product development  [3], and 
7. Goal programming for modeling and solving the optimal resource allocation problem. 

In order to develop the method we have to construct a function that connects between 
resources spent and resulting information reliability. In addition, we will have to construct a 
measure of decision robustness since the maxα  value might not be directly applicable. These 
issues are addressed below. 

One-way to improve a decision robustness in the best way possible is to find comparison 
limits that we can contract, i.e., improve their certainty, which will enable us to expand the 
other limits as much as possible. Since we are improving the robustness of the decision, this 
manipulation of the limits must maintain the best choice.  

It might be that no budget is needed to expand the feasible area. Since we start the 
optimization with maxα  that is common to all matrices, it might be possible that in a certain 
matrix we can still expand the limits of the input without affecting the final outcome of the 
calculation. The system can calculate the expansion reached in the final feasible area by 
expanding the limits of the comparison values in one of the matrices and checking that the 
chosen option remains the same.  

But besides such free expansion, in general, in order to expand one pairwise comparison, we 
would have to contract another. This would require investing resources in a specific uncertain 
comparison value to improve its certainty. Another method to improve the solution robustness 
would be to improve the reliability of a specific source of information that will also narrow a 
specific comparison limit, thus allowing the expansion of others. Since the quality (in our case 
the uncertainty) is not linearly improved as a function of the efforts invested, we need a model 
to simulate the investment needed to reach a certain uncertainty level. The model used was 
taken from  [3]. 

In order to improve the accuracy of our assessment, we will try to raise the lower limit and to 
lower the higher limit obtained. In the case of raising the original lower limit of the value 
(marked o

ijl ) to a new value n
ijl , the following model describes the relationship between the 

new lower limit of the value and the investment needed to reach it: 
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where: 
o
ijl  – the original lower limit of the value, 
o
iju  – the original upper limit of the value, 
n
ijl  – the new lower limit, 

g( n
ijl ) – the investment needed to reach n

ijl , and 
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where Ab%j – the investment needed in comparison j to reach b% of its maximal comparison 
range thus creating a perfect and certain comparison. Fixing this value is the task of the DM. 
It can be done based on experience and may evolve during decision-making. 

This relationship describes the investment needed (g( n
ijl )) as a function of the new limit n

ijl .  

The maximal improvement is obtained by reaching the other limit, in this case, o
iju . A similar 

function can be written for lowering the upper limit: 
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The functions in Equations 8 and 9 are shown in Figure 7. In the calculation process described 
later, the investment of moving the lower limit is first calculated and then the investment of 
improving the higher limit is calculated.  

Investment needed 
to raise the lower 
limit 

Investment needed 
to lower the higher 
limit 

n
ijln

iju

( )n
ijlg

( )n
ijug

 
Figure 7: The investment needed as a function of the initial limits, the maximal limit possible 

and the desired new value of the limit 

The robustness of the decision was modeled using the area of the feasible domain Ω . 
Although according to Ben-Haim, maxα  denotes the robustness of the decision, once we allow 
different maxα  values, we cannot use it as the required measure. Consequently, we use a less 
theoretically motivated measure but one the intuitively is meaningful: large area means more 

Investment 
needed 

The new 
limit checked 



latitude in assigning preferences while maintaining the same decision. In the future, we would 
study this measure and its relation to maxα  in detail. 

We formulate the robustness maximization problem as follows: 
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The ( )ΩArea  is calculated by following the algorithm in Section 2 for obtaining a feasible 
area. The total spending on comparison range contraction (increase of mo

ijl ,  and decrease of 
mo

iju , ) is bounded by the total budget B . The additional upper index m  denotes the index of 
the comparison matrix in the hierarchical problem model (in the example problem in Section 
3, there are 4 matrices). The problem in Equation (10) has been solved by goal programming. 

5 Example revisited 

In Section 3, we obtained a robustness measure of selecting between three plastic molding 
machines. With a global value of maxα =8.15, the solution was quite robust. In order to 
demonstrate the RBR method, we let the ranges of the criterion “Simplicity of parts” vary in 
response to some investment. The 3D space in Figure 8 shows the extent to which we can 
improve the robustness of the overall solution by investing 500-unit budget (e.g., men hours) 
in improving the comparison values of the “Simplicity of parts” comparison matrix. The 
darker line surrounding the smaller region shows the feasible area before the investment, and 
the lighter lines show the feasible area after the investment. It can be seen that small decrease 
in some comparisons led to large increase in another. Consequently, the solution robustness is 
significantly enlarged. 

III.  
Ziv-Av 
No Rod 

I. Engel
II. Ziv-Av Elastic 

 

Figure 8: Drawing of the feasible area and its reflection at x-y plane 



The next question to ask is: what is the budget that we should invest? If this budget is too 
small, we might not achieve the potential robustness and remain with a possible unstable 
answer. In contrast, we have to be sure that the entire budget invested is used properly and not 
wasted. In order to find what is the optimal budget to be used, the influence of the budget 
investment on the robustness was studied. The size of the feasible area as a function of the 
budget used was calculated (the size of the feasible area is the parameter used to check the 
changes in the robustness). It was found that beyond 1000 unit budget, the solution robustness 
did not change. Therefore, this is the maximally required budget.  

6 Discussion 

This paper presented a method for calculating the robustness of decision-making scenarios. 
This method can assist the task of selecting between alternatives so profound in engineering 
design. The method rests on simple models with minimal assumptions on the nature of 
uncertainty. In addition, the paper presented a new problem in decision-making with its 
solution: maximizing the robustness of decision by utilizing resources. The solution to both 
problems was demonstrated on a simple but realistic decision problem. While there are other 
studies in the literature that deal with decision making with range or fuzzy preferences, and 
some that deal with choices with partial information, we are not aware of a study dealing with 
the second problem. In the future, we intend to develop these methods further, to better 
understand the meaning of the parameters of the method, and to explore different resource 
allocation functions and robustness decision measures.    
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